CFD Review  
Serving the CFD Community with News, Articles, and Discussion
 
CFD Review

User Preferences
Site Sponsorship
Headline Feeds
Mobile Edition
Privacy Policy
Terms of Service
twitter

Submit a CFD Story

Site Sponsors
Siemens PLM Software
Pointwise: Reliable CFD meshing
Software Cradle

Tell a Friend
Help this site to grow by sending a friend an invitation to visit this site.

CFD News by Email
Did you know that you can get today's CFD Review headlines mailed to your inbox? Just log in and select Email Headlines Each Night on your User Preferences page.

 
Computer Simulation Improves Offshore Drill Rig Safety
Posted Tue March 24, 2015 @09:23PM
Print version Email story Tweet story
Application Los Alamos National Laboratory mechanical and thermal engineering researchers’ efforts to solve the complex problem of how ocean currents affect the infrastructure of floating oilrigs and their computational fluid dynamics (CFD) numerical simulations received recognition from ANSYS Inc., a company that provides computer-based engineering simulation capabilities.

Sponsor CFD Review

“Because energy resources are in demand, and most of the Earth is covered by water, we are going into deeper and more challenging waters to meet our energy needs,” said Dusan Spernjak, of the Laboratory’s mechanical and thermal engineering team. “Designing a floating structure for offshore deep water oil drilling is a challenging task because drilling starts deep under the sea surface with no infrastructure in place.”

Vortex-induced motion (VIM) is a complex problem that occurs when there are highly turbulent flow and fluid-solid interaction phenomena. The available experimental data are very limited, especially from field measurements. The large size of the problem and complex physics calls for advanced numerical simulations using supercomputers to solve VIM.

vortex induced motion
A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs.

Spernjack said that it is important to minimize the motion of drilling platforms caused by vortex shedding from ocean currents. Vortex shedding affects the integrity of key components such as riser and mooring systems of the offshore drilling station, which directly impact system safety.

In the vortex-induced motion study, Los Alamos researchers focused on the motion of the floating structure resulting from complex fluid-structure interaction and vortex shedding from sea currents. The team performed a comprehensive parametric sensitivity study in which they tested different turbulence models and other modeling parameters. The researchers confirmed the computational fluid dynamics results using extensive experimental measurements in a tow tank facility, which tests hydrodynamics and creates functional waves.

The simulations reveal insights into the physics of vortex shedding and VIM at different length and time scales. The immediate benefits include the improved process for design optimization for large floating structures, and possible strategies for vortex-induced motion improvement.

The Los Alamos mechanical and thermal engineering team’s CFD project finished as a finalist in ANSYS’s Hall of Fame.

“Recognition from ANSYS for our effort to improve offshore drilling safety brings global exposure to the diverse science and advanced engineering conducted by the Laboratory and our team,” Spernjak said. “Making their Hall of Fame is the result of a great team effort, from our postdoc Seung Jun Kim to our industry partners, with support from Los Alamos high-performance computing.”

About ANSYS
ANSYS Inc. brings clarity and insight to the most complex design challenges through fast, accurate and reliable simulation. The ANSYS Hall of Fame competition showcases some of the most complex engineering simulation images and animations, from users all over the world, of its commercially available engineering simulation tool.

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

[ Post Comment ]

Multidisciplinary Optimization of High Performance Turbochargers by TURBOdesign Suite | Thermal Die Cycling Analysis Webinar  >

 

 
CFD Review Login
User name:

Password:

Create an Account

Related Links
  • ANSYS
  • Los Alamos National Laboratory
  • More on Application
  • 'Computer Simulation Improves Offshore Drill Rig Safety' | Login/Create an Account | Search Discussion

    The following comments are owned by whoever posted them.
    We are not responsible for them in any way.

    The smallest worm will turn being trodden on. -- William Shakespeare, "Henry VI" All content except comments
    ©2017, Viable Computing.

    [ home | submit story | search | polls | faq | preferences | privacy | terms of service | rss  ]